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I 

ABSTRACT 

Cohort component models are often used to model the evolution of an age-specific 
population, and are particularly useful to highlight which demographic component 
contributes the most to population change. Many methods have been proposed to forecast 
four demographic components, namely mortality, fertility, emigration and immigration. 
These existing methods are sometimes considered from a deterministic viewpoint, which 
in practice can be quite restrictive. The statistical method we propose is a multilevel 
functional data analytic approach, where the mortality and migration for females and 
males are modelled and forecasted jointly. The forecast uncertainty associated with each 
component is incorporated through bootstrapping. Using the historical data for the United 
Kingdom from 1975 to 2009, we found that the proposed method shows good in-sample 
forecast accuracy for the holdout data between years 2000 and 2009. Moreover, we 
produce out-of-sample population forecasts from 2010 to 2030, and compare our 
forecasts with those produced by the Office for National Statistics. 
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1 INTRODUCTION

In recent decades, we have seen a considerable amount of development in the stochastic modelling

and forecasting of population. This includes the pioneering work of Alho & Spencer (1985, 2005),

Keilman (1990), Ahlburg & Land (1992), Lee & Tuljapurkar (1994), Lutz (1996), Bongaarts &

Bulatao (2000), De Beer (2000), Alho et al. (2006), Raftery et al. (2012), Bryant & Graham (2013),

among many others. Most of this body of work emphasise the advantages of stochastic modelling

and forecasting over deterministic counterparts (for reviews, see Wilson & Rees 2005, Booth 2006).

While the stochastic approach incorporates uncertainty into population estimates and forecasts,

the deterministic approach provides only plausible scenarios representing high, medium and low.

Despite the advantages of stochastic forecasts, they have been of limited use by official statistical

agencies for several reasons (Lutz & Goldstein 2004). First, it is not straightforward to consider all

different types of forecast uncertainties. Second, official statistical agencies are often constrained to

a limited set of statistical methods with which they are familiar (see also Wiśniowski et al. 2013).

While much has been done in the development of stochastic techniques, there remains a lot of work

needed to produce probabilistic models that are usable at a detailed demographic level.

In this paper, we consider a functional data analytic approach for forecasting population (see

also Hyndman & Booth 2008). As a generalisation of Lee & Carter’s (1992) method, the functional

data analysis views each component of population from a functional perspective, by combining

ideas from nonparametric smoothing (Eubank 1999), functional principal component regression

(Hyndman & Ullah 2007), and bootstrapping (Efron 2011). It has the following features: data

are pre-processed before performing functional principal component analysis in order to reduce

the effect of the noisy and missing observations. Each component of population is modelled as

continuous functions of age, so that patterns of variation among years are captured by the functional

principal components and their scores. By drawing from normal distributions, the simulated scores

can be forecasted using a univariate time-series technique for each replication. Conditioning on the

estimated mean and functional principal component functions, the probabilistic forecasts of future
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realisations can be obtained through bootstrapping.

Demographic events, such as fertility, mortality, and migration tend to exhibit strong regularities

in their age patterns. Modelling the age profiles over time permits a relatively concise representation

of the history of demographic patterns. The time-series methods can be utilised to extrapolate age

profiles in future years. Throughout this paper, we focus on exploring two functional data models

for forecasting age-specific fertility, mortality, emigration rates and immigration counts in a cohort

component projection model. We also focus on exploring the consequences of choosing different

Box-Cox transformation parameters for age-specific fertility, mortality, emigration and immigration

in a cohort component projection model in terms of its in-sample measure of uncertainty. As an

illustration, we use a time series from the United Kingdom (UK), consisting of age-specific data

for single year of age from 1975 to 2009. We use the term “forecast” to refer to an outcome of

a probabilistic exercise in predictions, as opposed to purely deterministic “projection” (Keilman

1990).

This functional data analytic approach was first implemented by Hyndman & Booth (2008) to

forecast population in Australia. Our work differs from Hyndman & Booth (2008) in four aspects:

(1) we use the multilevel functional data method to jointly model mortality and migration for

females and males. In doing so, an improved point and interval forecast accuracy can be obtained,

as evident from the in-sample population forecasts in Section 5; (2) we use a grid search method

to find the optimal Box-Cox transformation parameter for mortality, fertility and migration; (3)

we model the emigration and immigration separately, instead of the net migration in Hyndman &

Booth (2008); (4) bootstrapping is the chosen method for constructing prediction interval, and it

does not depend on normality assumption.

This article is organised as follows. In Section 2, we present a general background to population

forecasting, define the sex- and age-specific population projection matrix, and highlight the issues

pertaining to the stochastic modelling and forecasting of each demographic component by age

and sex. In Section 3, we introduce the functional principal component regression to forecast the

age profiles of each demographic component. Illustrated by the UK’s data given in Section 4, we
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evaluate the in-sample accuracy using a holdout sample, and present out-of-sample forecasts from

2010 to 2030 in Section 5. Conclusions are given in Section 6, along with some ideas on how the

methods presented here can be further extended.

2 COHORT COMPONENT POPULATION PROJECTION MODEL

We consider the cohort component model for describing the evolution of an age-specific population

(see also Preston et al. 2001, Wiśniowski et al. 2013). For each age or age group, we need to

estimate age-specific fertility, mortality, emigration rates and immigration counts. We work with

single year of age and instead of modelling net migration, we choose to model emigration rates

and immigration counts separately for the reasons given in Rees (1986) and Raymer et al. (2012).

The accurate estimation and forecast of mortality is important for the calculation of the survival

rate si for years i = 0, . . . , 89, 90+. The survival rate measures the proportion of age i, which will

survive to the next period of time. Second, the fertility rate, f j for j = 13, . . . , 51, measures the

yearly average number of survived offspring of women aged j. Third, the emigration rate ηi for

i = 0, . . . , 89, 90+, measures the average number of migrants at age i. Finally, the immigration

count, Ii, measures the total number of immigrants at age i.

As in Wiśniowski et al. (2013), let PF
i,t and PM

i,t denote the number of females and males of age i

at the beginning of year t. The relationship between consecutive periods of times can be expressed

by means of a projection matrix, given by


PF

t+1

PM
t+1

 =



abF
t 0

sF
t O

(1 − a)bM
t 0

O sM
t



×


PF
t

PM
t

 +


IF

t

IM
t

 ,

where Pk
t , k = M or F, denotes the male and female population, respectively, for all ages at the

beginning of year t, and a = 1/(1+1.05) is the assumed proportion to female births in the population

(Preston et al. 2001). The bk
t = (0, . . . , bk

13,t, . . . , b
k
51,t, . . . , 0) is a vector of life-table birth rates,
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which can be derived from the age-specific fertility rates as follows

bk
i,t =

1
1 + 0.5µk

0,t

1
2

(
fi,t + sF

i,t fi+1,t

)
,

where fi,t > 0 represents the fertility rate at age i in year t; µk
0,t represents the age-specific female or

male mortality rate at age 0; sF
i,t represents female survival rate at age i in year t. For males and

females, the age-specific survival rate can be estimated from age-specific mortality and emigration

rates. It is defined by

sk
i,t =



1−0.5
(
µk

i,t+η
k
i,t

)

1+0.5
(
µk

i+1,t+η
k
i+1,t

) if i = 0, . . . , 89

1−0.5
(
µk

i,t+η
k
i,t

)

1+0.5
(
µk

i,t+η
k
i,t

) if i = 90+

,

where µi,t represents the mortality rate at age i in year t; ηi,t represents the emigration rate at age i in

year t. As shown in Preston et al. (2001), the survival rate matrix for all ages can then be expressed

as

sk
t =



sk
0,t 0 0 . . . 0

0 sk
1,t 0 . . . 0

...
. . .

...

0 0 . . . sk
88,t 0 0

0 0 . . . 0 sk
89,t sk

90+,t



.

In (2), 0 = (0, . . . , 0) is a vector of length 91 and O is a matrix of zeros of size (90 × 91), and

IF
t = (IF

0,t, . . . , I
F
90,t)

′ represents the vector of immigration counts at year t.

The cohort-component population projection model is very useful and easy to implement for

delineating the evolution of a population (see for example, Rogers 1975, Kajin et al. 2012). The

projection model is also helpful for describing the long-term evolution, where the composition of

the population achieves an equilibrium (Dublin & Lotka 1925, Rogers 1995, Preston et al. 2001, de

la Horra et al. 2013). However, in practice, the difficulty of the projection model is that it is not

possible to know the true values of each component of a population. Therefore, we are required to

forecast each component. Wiśniowski et al. (2013) take a Bayesian viewpoint to model various
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sources of uncertainty in each demographic component of population. Instead of modelling rates,

their Bayesian method models the Poisson counts (see also Czado et al. 2005). Instead of using

more than one principal component, they include a cohort effect (see also Renshaw & Haberman

2006). In order to capture the correlation between genders, they use vector autoregression model of

order 1. In this paper, we tackle this problem by applying two functional data models and highlight

their differences in terms of forecast accuracy.

3 FUNCTIONAL DATA ANALYTIC APPROACH

The functional data analytic approach has received an increasing amount of attention in the field

of demographic forecasting (see also Lazar & Denuit 2009, Yang et al. 2010, Dowd et al. 2010,

Cairns et al. 2011, D’Amato et al. 2011), since its first application to demographic forecasting by

Hyndman & Ullah (2007). The objective of functional approach is to analyse a set of functions,

usually smooth and bounded within an interval; such functional data may be age-specific mortality

or fertility rates (see for example, Hyndman & Ullah 2007, Hyndman & Shang 2009, Hyndman

et al. 2013). While Ramsay & Silverman (2005) and Ferraty & Vieu (2006) provided detailed

surveys of many parametric and nonparametric techniques for analysing functional data, some

recent developments are collected in the edited books by Ferraty & Romain (2011) and Ferraty

(2011).

In the functional data analysis literature, popular approaches for nonparametric functional

estimation include kernel regression methods (see for example, Ferraty & Vieu 2006), models that

assume the functions of interest can be represented as linear combinations of, for example, fourier,

wavelet, spline or eigenbasis functions (see for example, Ramsay & Silverman 2005), and models

that assume the functions are realisations of stochastic processes (see for example, Bosq 2000).

In this paper, we consider that each function can be approximated by a set of functional principal

components and their corresponding scores.
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3.1 AN INDEPENDENT FUNCTIONAL DATA MODEL

Differing from the Lee & Carter’s (1992) model, the proposed functional data analytic approach

can be described as follows:

1. Let mi,t represent the original data for ages i = 0, . . . , 89, 90+ in year t. The Box-Cox

transformation is applied to each component of population in order to alleviate heteroscedasticity,

and it can be expressed as

gi,t =



1
ς

(
mς

i,t − 1
)

if 0 < ς ≤ 1;

ln(mi,t) if ς = 0;
t = 1, 2 . . . , n,

where gi,t represents the transformed data at age i in year t. To select the optimal transformation

parameter ς, we examine a range of plausible values from {0, 0.1, . . . , 1}. Based on the in-

sample coverage probability reported in Section 5, we found that the log transformation

(ς = 0) is appropriate for mortality, the Box-Cox transformation with parameter ς = 0.4 is

appropriate for fertility (see also Hyndman & Booth 2008), and ς = 0.5 is appropriate for

migration.

2. Pre-smoothing step. Since the object in functional data analysis is a smooth function, we

apply a smoothing technique to transform a set of discrete data points to a smooth function.

As a result, there is a change of notation from gi,t to gt(xi), where xi represents the discrete

observations. It is assumed that there is an underlying continuous and smooth function τt(x)

that is observed with error at discrete ages. Then, we can write

gt(xi) = τt(xi) + σt(xi)εi,t, t = 1, . . . , n,

where σt(xi) models the variability for each age xi in year t; and εi,t ∼ N(0, 1) is an

independent and identically distributed random variable.

For modelling age-specific mortality, we utilised penalised regression splines with a partial
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monotonic constraint for age above 65 (see Ramsay 1988, Hyndman & Ullah 2007, for more

details). For modelling age-specific fertility, we used a weighted median smoothing B-spline,

constrained to be concave (see He & Ng 1999). For modelling age-specific emigration

rates and immigration counts, a smoothing spline is used where the smoothing parameter is

automatically determined by generalised cross validation (see Wahba 1990).

3. Decomposition step. Higher order terms of the functional principal component decomposition

improves the Lee-Carter model because these additional components capture non-random

patterns, which are not explained by the first functional principal component (Booth et al.

2002, Renshaw & Haberman 2003, Koissi et al. 2006). By using functional principal

component analysis (FPCA), a set of functions is decomposed into orthogonal functional

principal components and their associated scores. For a survey on FPCA, consult Hall (2011)

and Shang (2013). The functional principal component decomposition is given by

τt(x) = µ(x) +

K∑

k=1

βt,kφk(x) + et(x), x ∈ [0, 90+],

where µ(x) is the mean function estimated by µ̂(x) = 1
n

∑n
t=1 τt(x); {φ1(x), . . . , φK(x)} is a set

of the first K functional principal components; {βt,1, . . . , βt,K} is a set of principal component

scores and βt,k ∼ N(0, λk) where λk is the kth eigenvalue of the covariance operator (see

Appendix A for details); et(x) ∼ N(0, σ2) is the error function with mean zero and finite

variance; and K < n is the number of retained components. Hyndman & Booth (2008) found

that K = 6 is sufficient to capture a substantial amount of variance in the data.

In order to capture the main sources of model uncertainty, we consider the parametric

bootstrap method of Crainiceanu & Goldsmith (2010) by sampling βt,k and et(x) from

Gaussian distributions with zero mean and estimated variances. In Appendix B, we present

the modified WinBUGS code for estimating the variance parameters.

4. Forecasting step. A wide range of time-series models may be used to forecast principal
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component scores. Conditioning on the smoothed functions I = {τ1(x), . . . , τn(x)} and the

estimated set of functional principal components B = {φ1(x), . . . , φK(x)}, the h-step-ahead

probabilistic forecast of mn+h(x) can be obtained as

ĝ(b)
n+h|n(x) = E[gn+h(x)|I,B] = µ̂(x) +

K∑

k=1

β̂(b)
n+h|n,kφk(x) + ê(b)

n+h|n(x) + σ̂n+h(x)̂ε(b)
n+h,

for b = 1, . . . , B, where B = 1000 represents the number of iterations. β̂(b)
n+h|n,k denotes

the h-step-ahead forecast of βn+h,k using a univariate time series model, such as the optimal

autoregressive integrated moving average (ARIMA) model selected by the automatic algorithm

of Hyndman & Khandakar (2008) based on corrected Akaike Information Criterion, e(b)
n+h|n(x)

is simulated from a normal distribution with zero mean, σ̂n+h(x) represents the estimated

variance from the historical observations, and ε̂(b)
n+h is simulated from a standard normal

distribution.

3.2 A COHERENT FUNCTIONAL DATA MODEL

Individual forecasts of females and males, even when based on similar extrapolative procedures are

likely to imply increasing divergence in each component of population in the long run, counter to the

expected and observed trend toward convergence (Wilson 2001). This motivates the development

of coherent forecasting methods, such as the augmented common factor Lee-Carter model (Li &

Lee 2005) or the product-ratio model (Hyndman et al. 2013). Here, we introduce a new estimation

method for the coherent functional data model, and apply it to population forecasting.

We present the problem in the context of forecasting male and female age-specific mortality

rates, despite the fact that the methodology can easily be generalised to migration. The multilevel

functional data method can model multiple sets of functions that may be correlated among groups

(see also Crainiceanu et al. 2009, Crainiceanu & Goldsmith 2010, Staicu et al. 2010, Zipunnikov

et al. 2011). Staicu et al. (2010) draw the close connection between the multilevel functional data

models and hierarchical modelling, and suggest Bayesian method using Markov chain Monte Carlo
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sampling algorithm to estimate the parameters (see also Crainiceanu & Goldsmith 2010).

In this paper, we adapt the multilevel functional data model to analyse two samples of functions,

observed for two subpopulations that may be correlated. The basic idea is to decompose functions

from different subpopulations into an aggregated average, a sex-specific deviation from the

aggregated average, a common trend, a sex-specific trend and measurement error. The common and

sex-specific trends are modelled by projecting them onto the eigenvectors of covariance operators

of the aggregated and sex-specific centred stochastic processes, respectively. To express our idea

mathematically, the smoothed female mortality rate at year t can be written as

τF
t (x) = µ(x) + ωF(x) + Rt(x) + UF

t (x) + εF
t (x), (1)

where µ(x) represents the overall mean function, ωF(x) is the female deviation from the overall

mean function, Rt(x) models the common trend for female and male mortality rates, UF
t (x) models

the sex-specific trend in the female mortality, and εF
t (x) represents the error term. To ensure

identifiability, we assume Rt(x), UF
t (x) and εF

t (x) are uncorrelated, and εF
t (x) is white noise with

finite variance σ2.

Because the centred stochastic processes R and U are unknown in practice, the population

eigenvalues and eigenfunctions can only be approximated through realisations of {R1(x), . . . ,Rn(x)}
and {U1(x), . . . ,Un(x)}. The sample mean and sample covariance are thus given by

µ̂(x) =
1

2n

2∑

j=1

n∑

t=1

τ
( j)
t (x), (2)

ω̂F(x) = µ̂F(x) − µ̂(x), (3)

R̂t(x) ≈
K∑

k=1

β̂t,kφ̂k(x), (4)

ÛF
t (x) ≈

L∑

l=1

γ̂F
t,lψ̂

F
l (x), (5)

where {̂βt,1, . . . , β̂t,K} and {̂γF
t,1, . . . , γ̂

F
t,L} represents the sample principal component scores of R̂t(x)
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and ÛF
t (x), respectively; {φ̂1(x), . . . , φ̂K(x)} and {ψ̂F

1(x), . . . , ψ̂F
L(x)} are the corresponding orthogonal

sample eigenfunctions; K and L represent the retained number of components. Following the work

of Crainiceanu & Goldsmith (2010), we use a cumulative percentage of total variation to determine

K and L. Concretely, the optimal K and L are determined to be the first few components that

explain at least 99% and 90% of total variations in the common trend and sex-specific trend.

Inserting (2) to (5) into (1), we obtain

gF
t (x) = µ̂(x) + ω̂F(x) +

K∑

k=1

β̂t,kφ̂k(x) +

L∑

l=1

γ̂F
t,lψ̂

F
l (x) + εF

t (x) + σt(x)εt, (6)

where β̂t,k ∼ N(0, λ̂(1)
k ), γ̂F

t,l ∼ N(0, λ̂F
l ) and εF

t (x) ∼ N(0, σ̂2). Note that (6) has been given in

Hyndman & Ullah (2007, eq.15) as future research, but to the best of our knowledge, this has not

been studied in population forecasting.

We formulate (6) from a linear mixed model (Pinheiro & Bates 2000), where the mechanism of

Bayesian inference can be used to estimate λ(1)
k , λF

l , σ
2 and then draw random samples βt,k, γ

F
t,l from

the posterior distribution (Crainiceanu & Goldsmith 2010).

Conditioning on the estimated basis functions Φ =
[
φ̂1(x), . . . , φ̂K(x)

]
, Ψ =

[
ψ̂F

1(x), . . . , ψ̂F
L(x)

]

and smoothed functions I =
[
τF

1(x), . . . , τF
n(x)

]
, the point forecasts of gF

n+h(x) are given by

ĝF
n+h|n(x) = E

[
ĝF

n+h(x)|Φ,Ψ,I
]

= µ̂(x) + ω̂F(x) +

K∑

k=1

β̂n+h|n,kφ̂k(x) +

L∑

l=1

γ̂F
n+h|n,lψ̂

F
l (x),

where β̂n+h|n,k and γ̂F
n+h|n,l are the forecasted principal component scores, obtained from a univariate

time-series method, such as the autoregressive integrated fraction moving average (ARFIMA)

method of Hyndman et al. (2013).

The prediction interval of gF
n+h|n(x) can be obtained using parametric bootstrap samples, given
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by

ĝb,F
n+h|n(x) = µ̂(x) + ω̂F(x) +

K∑

k=1

β̂b
n+h|n,kφ̂k(x) +

L∑

l=1

γ̂b,F
n+h|n,lψ̂

F
l (x) + ε̂b

n+h(x) + σ̂n+h(x)̂εb
n+h,

for b = 1, . . . , B, where β̂b
n+h|n,k is the forecast of principal component scores

{̂
βb

1,k, . . . , β̂
b
n,k

}

drawn from N
(
0, λ̂(1)

k

)
; similarly, γ̂F

n+h|n,l is the forecast of bootstrapped principal component

scores
{
γ̂b,F

1,l , . . . , γ̂
b,F
n,l

}
drawn from N

(
0, λ̂F

l

)
; ε̂b

n+h(x) is drawn from N
(
0, σ̂2

)
; σ̂n+h(x) represents

the estimated variance for each age, and ε̂b
n+h is simulated from a standard normal distribution;

and B = 1000 represents the number of bootstrap replications. The prediction intervals can be

constructed from percentiles of these mortality forecasts.

4 DATA

The historical UK population data include observations from 1975 to 2009, from which we aim to

forecast population by age and sex from 2010 to 2030. To obtain such forecasts, it is essential to

accurately estimate and forecast age-specific fertility, mortality and emigration rates, as well as

immigration counts. The fertility data were obtained from the Human Fertility Database (2013),

while the mortality data were obtained from the Human Mortality Database (2013). The emigration

and immigration counts were obtained directly from the Office for National Statistics (ONS). The

UK population has been obtained from Human Mortality Database (2013). The UK mid-year

population estimate for 2009, used as a baseline for prediction, has been obtained from the ONS.

We consider mortality rates for single year of age for ages from 0 to 90+. For each gender

in a given calendar year, the mortality rates, given by the ratio between the “number of deaths”

and the “exposure to risk”, are arranged in a matrix for age and time. By analysing the changes in

mortality as a function of both age x and time t, we have seen that mortality has shown a gradual

decline over time. To have an idea of this evolution, we present the logarithm of mortality rates

for ages 0-90+ from 1975 to 2009 in Figure 1. Mortality rates dip in early childhood, climb in

the teen years, stabilise in the early 20s, and then steadily increase with age. Some years exhibit

11



sharp increases in mortality between the late teens and early 20s. In general, we notice that for

both females and males, mortality rates are decreasing over time, especially for ages between 0 and

10. Males exhibit considerably higher mortality in young adulthood than females.
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Figure 1. UK female and male age-specific log mortality rates (1975-2009). The distant past years are shown
in red, with the most recent years in violet. Curves are ordered chronologically according to the colours of the
rainbow. The black line represents the mortality in 2009

The age-specific fertility rates are defined as the number of live births during a given calendar

year, according to the age of the mother among the female resident population of the same age at

30th June. Age-specific fertility rates between ages 13 and 51 from 1975 to 2009 are presented

in Figure 2. We notice that there is an increase in fertility rates at higher ages in more recent

years caused by a tendency to postpone child-bearing while women are pursuing careers or higher

education (Nı́ Bhrolcháin & Beaujouan 2012).

The total flows of emigration and immigration counts are presented in the top row of Figure 3.

We notice that migration for both genders follow a similar trend over time. The immigration counts

have been rapidly increasing since 1990 up until 2005. By contrast, there is a slight increase

over time in the emigration data, but the patterns seem to be more volatile. One explanation

for such a volatility stems from the fact that the data on emigration in the UK come from the

International Passenger Survey (IPS), which has several pitfalls as explained in Raymer et al.

(2012). In particular, larger irregularities appear when the data are disaggregated by single year of

age, as illustrated for immigration and emigration in the middle and bottom rows of Figure 3.
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Figure 2. UK age-specific fertility rates between ages 13 and 51. The black line represents the fertility pattern in
2009

5 RESULTS

We present the results of forecasting each component of the UK population, using the independent

functional data model described in Section 3.1. For each component, we examine the goodness-of-

fit of the model to the data, and forecasts of future age-specific patterns.

5.1 FORECASTS OF MORTALITY

We present the first two fitted functional principal components which capture more than 96% of

the total variation in the female mortality, and their associated scores in Figure 4. Throughout this

section, the functional principal component decomposition is carried out using the independent

functional data model, for example. The functional principal components are modelling different

movements in log mortality rates. By inspecting the peaks and troughs, we found that φ1(x)

primarily models mortality changes in children and those over 60, while φ2(x) models the difference

in adults between ages 20 and 40. The log mortality rates for children and those over 60s have

dropped over the whole data period, and the difference in adults between ages 20 and 40 is

also continuing to drop. These phenomena are captured by the time-series model in forecasting
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Figure 3. Total and age-specific emigration and immigration counts for the UK from 1975 to 2009. The black line
represents the migration data in 2009

continuing decreasing trend for these coefficients over the next 26 years.

In Figures 5a and 5b, we present the model fit to the data for 2009. Based on the historical
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Figure 4. Functional principal components and associated scores for the UK male mortality data. A
decomposition of K = 6 has been used for analysis, although we display only the first two components. The solid
line represents the point forecasts of scores, where the dark and light grey regions represent the 80% and 95%
point-wise prediction intervals, respectively. In the bottom panel, the forecasted principal component scores are
multiplied by the fixed functional principal components, then adding the mean of transformed mortality to produce
forecasts

15



mortality from 1975 to 2009, we produce the probabilistic forecasts of age-specific log mortality

rates. As shown in Figures 5c and 5d, the mortality rates are continuing to decline, especially

for elderly people. The decline seems to be more rapid for males than females. As a result of

decreases in mortality, we observe an increase in life expectancy for both females and males shown

in Figures 5e and 5f.

To support our rationale, the in-sample prediction of life expectancy from 2000 to 2009 is

analysed. It turns out that 68% of the observed mortality rates for years 2000-2009 fall into the 80%

prediction interval. For the 95% prediction interval, 86% observations fall into it. With the same

data set, the in-sample coverage probabilities are similar to those obtained via Bayesian log-linear

model with Poisson counts (see Wiśniowski et al. 2013, for more details).

Furthermore, for a set of possible Box-Cox transformation parameters, we calculate their

in-sample empirical coverage probabilities, and determine the optimal transformation parameter

ς with a minimal difference between the nominal and empirical coverage probabilities. In the

case of mortality, ς = 0. The table of the in-sample coverage probabilities for different Box-Cox

transformation parameters can be provided upon request from the authors.

5.2 FORECASTS OF FERTILITY

Akin to mortality, the first two fitted functional principal components that capture around 92% of

the total variation and their associated scores are presented in Figure 6. The functional principal

components are modelling the fertility rates of mothers in different age groups: φ1(x) represents

mothers between their late 20s and 30s; φ2(x) represents young mothers in their late teens and

those between ages 20 and 40. The forecasted coefficients associated with each functional principal

component demonstrate the recent social effects. The fertility trend between the late 20s and 30s

are predicted to continue in the near future.

In Figure 7a, we present the model fit to the data for 2009. Based on the historical fertility

from 1975 to 2009, we produce the probabilistic forecasts of age-specific fertility. As shown in

Figure 7b, the greatest forecast change is a continuing decrease in fertility rates for ages between

16



●

●
●

●
●

●

●●●

●

●
●●●

●●
●●

●●●●
●

●
●

●●●
●●●●●●

●●●●●●
●●●●

●●●●●●
●●

●●●●●●●
●●●

●●
●●●●●●

●●●●●●●
●

●
●

●●
●

●●
●

●●
●

●

●

0 20 40 60 80

−
10

−
8

−
6

−
4

−
2

0
Female

Age

Lo
g 

m
or

ta
lit

y 
ra

te

● actual data
fitted data

(a) Model fit for 2009

●

●

●

●
●

●●

●

●
●●

●●
●●

●●

●
●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●
●●●

●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●

●●●
●

0 20 40 60 80

−
10

−
8

−
6

−
4

−
2

0

Male

Age

(b) Model fit for 2009

●

●
●

●
●

●

●●●

●

●
●●●

●●
●●

●●●●
●

●
●

●●●●●●●●●
●●●●●●

●●●●
●●●●●●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●
●●●●●

●
●

●

0 20 40 60 80

−
10

−
8

−
6

−
4

−
2

0

Age

Lo
g 

m
or

ta
lit

y 
ra

te

● actual data in 2009
forecasted data in 2030
80% prediction interval

(c) Forecast for 2030

●

●

●

●
●

●●
●

●
●●

●●
●●

●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

0 20 40 60 80

−
10

−
8

−
6

−
4

−
2

0

Age

● actual data in 2009
forecasted data in 2030
80% prediction interval

(d) Forecast for 2030

Year

A
ge

1980 1990 2000 2010 2020 2030

70
75

80
85

(e) Life expectancy at birth
Year

1980 1990 2000 2010 2020 2030

70
75

80
85

(f) Life expectancy at birth

Figure 5. Model fit for mortality to 2009 data, forecasted age-specific mortality for 2030, and forecasted life
expectancy at birth until 2030
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Figure 6. Functional principal components and their scores for the fertility data. A decomposition of K = 6 has
been used for analysis, although we display only the first two components. The solid line represents the point
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17 and 30, but a continuing increase in fertility for ages between 30 and 40. The resulting total

fertility rates are presented in Figure 7c. It seems that the total fertility rate will decrease until 2015,

and then increase thereafter. The slight declining, yet uncertain, fertility rates signal a possibility of

another period of postponement, which can be linked to difficult economic conditions in terms of

budgetary austerity in the UK in the second decade of the 21st century (Kreyenfeld et al. 2012).
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Figure 7. Model fit for fertility to 2009 data, forecasted age-specific fertility for 2030, and forecasted total fertility
rate until 2030

The in-sample prediction of total fertility rate from 2000 to 2009 is analysed. It turns out 61%

of the observed total fertility rate from 2000 to 2009 fall within the 80% prediction interval. For

the 95% prediction interval, 73% observations fall into it. With the same data set, the in-sample
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coverage probabilities are similar to those obtained via Bayesian log-linear model with Poisson

counts (see Wiśniowski et al. 2013, for detail). Furthermore, the optimal Box-Cox transformation

parameter for the fertility data is 0.4.

5.3 FORECASTS OF MIGRATION

Migration consists of two parts, namely emigration (outflow) and immigration (inflow). We present

the first two fitted functional principal components that capture around 79% of the total variation in

both the female emigration rate and female immigration counts, along with their associated scores

in Figures 8 and 9. The functional principal components are modelling different age patterns. While

φ1(x) primarily models the migration of those in their 20s and 40s, φ2(x) models the contrasts in

migration between 20s and 30s. The future migration for the 20s and 40s is predicted to continue to

follow a similar pattern, but the difference between 20s and 30s has levelled off. This phenomenon

is reflected by the time-series model in projecting no change to these coefficients over the next 26

years.

In Figures 10a, 10b, 11a and 11b, we present the model fit to the migration data in 2009. Based

on historical migration from 1975 to 2009, we produce the probabilistic forecasts of age-specific

emigration rates and immigration counts. As shown in Figures 10c, 10d, 11c and 11d, the greatest

forecast change is a continuing increase in emigration rates and immigration counts for ages

between 20 and 40. The resulting female mean emigration rates across ages and female total

immigration counts across ages are presented in Figures 10e, 10f, 11e and 11f. They seem to be

increasing between 2010 and 2030.

5.4 POPULATION FORECASTS

Using the population in 1999 as a baseline, the age composition of the in-sample forecasted

population from 2000 to 2009 is presented in Figure 12. Compared with the holdout data (a

percentage of historical data that is reserved for use in measuring the forecast accuracy of a

method), we found that age profiles of the forecasted population obtained from the independent
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Figure 8. Functional principal components and their scores for the emigration rates. A decomposition of K = 6
has been used for analysis, although we display only the first two components. The solid line represents the
point forecasts of scores, where the dark and light grey regions represent the 80% and 95% point-wise prediction
intervals
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Figure 9. Functional principal components and their scores for the immigration counts. A decomposition of
K = 6 has been used for analysis, although we display only the first two components. The solid line represents the
point forecasts of scores, where the dark and light grey regions represent the 80% and 95% point-wise prediction
intervals
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Figure 10. Model fit for female and male emigration to 2009 data, forecasted age-specific emigration rate for
2030, and forecasted female and male mean emigration rates across ages between 2010 and 2030
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Figure 11. Model fit for female and male immigration to 2009 data, forecasted age-specific immigration counts
for 2030, total female and male immigrant counts between 2010 and 2030
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and coherent functional time-series methods are similar in shape to the actual population, except

for the newborns between 2005 and 2009. This may be due to the unforeseen increase in fertility

and increase in female immigrants due to European Union expansion (Waller et al. 2012).

In order to compare the point and interval forecast accuracy between the two functional methods,

we use mean absolute forecast error (MAFE) and coverage probability difference (CPD) (see also

Shang et al. 2011). The MAFE is the average of absolute error, |actual - forecast|, across years in

the forecasting period and ages, it measures forecast precision regardless of sign. The CPD is the

absolute difference between the nominal coverage probability and empirical coverage probability

for each age, averaged over years in the forecasting period. They are given by

MAFEh =
1

(11 − h) × 91

11−h∑

k=1

90+∑

i=0

∣∣∣∣ fk(xi) − f̂k(xi)
∣∣∣∣ , (7)

CPDh =
1

11 − h

11−h∑

k=1

∣∣∣∣∣∣∣
δ − 1

91

90+∑

j=0

I
[
f̂k,lb(xi) < fk(xi) < f̂k,ub(xi)

]
∣∣∣∣∣∣∣
, (8)

where I[·] represents the indicator function taking value 0 or 1, lb and ub represent the lower and

upper bounds of the prediction interval, respectively; δ represents the nominal coverage probability,

customarily 0.8. Values of MAFEh and CPDh closer to 0 indicate greater accuracy of the point and

interval forecasts.

From Table 1, we see that the multilevel functional data method does not only have a smaller

overall MAFE than the independent functional time-series method, but it also performs better in

terms of CPD.

With the population in 2009 as a baseline, the age composition of forecasted population in

2030 is presented in Figure 13. Forecasts of the total male and female populations are presented on

the right panel. We found that the age profile of the population in 2030 is mainly driven by future

migration and, to some extent, fertility. The largest uncertainties are associated with the number of

newborns, as well as the population at ages between 20 and 45, for both males and females. It is

also expected that the number of older people will be increasing in 2030, as well as the working

age group between 20 and 45.
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Figure 12. Forecasted age-specific female and male population size from 2000 to 2009. In the top row, we
present the forecasts obtained from the independent functional time-series method. In the middle row, we present
the forecasts obtained from the multilevel functional time-series method. In the bottom row, we present the actual
holdout data
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horizon MAFE CPD
Female Male Female Male

h Coherent Ind Coherent Ind Coherent Ind Coherent Ind

1 1033.12 1062.78 941.16 1024.67 0.12 0.14 0.05 0.03
2 1694.88 1743.50 1557.71 1641.11 0.17 0.18 0.16 0.13
3 2132.37 2198.55 2158.08 2223.17 0.18 0.24 0.29 0.28
4 2296.70 2458.21 2618.12 2823.55 0.17 0.21 0.25 0.33
5 2424.59 2551.71 2972.96 3261.54 0.12 0.16 0.22 0.29
6 2708.18 2714.55 3543.36 3827.76 0.06 0.12 0.21 0.26
7 3249.01 3059.97 4403.38 4674.53 0.07 0.05 0.25 0.26
8 3908.40 3616.24 5805.94 5878.05 0.09 0.07 0.32 0.27
9 4662.73 4343.90 7291.31 7356.01 0.12 0.10 0.34 0.34
10 5347.75 5008.54 8386.71 8597.10 0.12 0.11 0.35 0.37

Mean 2945.78 2875.80 3967.87 4130.75 0.12 0.14 0.24 0.26

Table 1. Point and interval forecast accuracy comparison between the coherent (also known as multilevel) and
independent functional data models. MAFE symbolizes mean absolute forecast error given in (7), while CPD
represents coverage probability difference given in (8)

With 2009 as a baseline population, the median size of 2030 population is expected to reach

71.9 million, which is by 10.3 million larger than the population of 61.6 million in 2009. As shown

in Table 2, we also compare our forecasts of total population with the 5-year official forecasts

prepared by the ONS, with 2010 as a baseline population. For each year considered, the ONS

forecasts fall into our 80% prediction interval. The differences in forecasts may be due to the fact

that the ONS assumes a constant net migration at the level of 200 thousand annually (Office for

National Statistics 2011). It is impossible to verify whether such an assumption will hold, given

high volatility in migration and the recent policy of the UK government to reduce net migration to

the levels below 100 thousand per year.

Point forecast 80% prediction interval
ONS PB PB

2010 62.262 62.193 (61.870, 62.557)
2015 64.776 64.210 (63.117, 65.386)
2020 67.173 66.449 (64.511, 68.430)
2025 69.404 69.040 (65.988, 72.019)
2030 71.392 71.859 (67.338, 75.937)

Table 2. Comparison of population forecasts (in million) between the ONS and the proposed parametric bootstrap
(PB) method

28



6 CONCLUSION AND FUTURE RESEARCH

In this paper, we present the independent and coherent functional time-series models for estimating

and forecasting age schedules of the four demographic components of changes in the UK. We

combine the forecasts of mortality, fertility, emigration and immigration into the forecast of

population, through a cohort component projection model. The advantage of our functional

models can be attributed to: (1) the use of a smoothing technique to smooth out noisy or missing

observations; (2) the use of higher order functional principal components to extract patterns in

the data; (3) accounting for the uncertainties embedded in fertility, mortality and migration for

each age and gender. The advantage of the multilevel functional data model is that it incorporates

correlation between two genders and thus allows each component of population to be modelled

jointly.

There are many ways in which the methodology presented here may be further extended,

and here we mention four: (1) it may be possible to extend the multilevel functional data

model to forecast age- and sex-specific population at subnational level; (2) it may be possible to

develop a fully Bayesian functional principal component regression to forecast population, without

conditioning on the fixed functional principal components; (3) the uncertainty of the baseline

population size used for the projection could be incorporated into the forecast; and (4) we aim to

explore the possibility of model averaging, which can adequately combine the forecasts obtained

from several population projection methods. Model averaging may improve the point and interval

forecast accuracy, as demonstrated in the context of mortality forecasting by Shang (2012). This

work provides a natural foundation for such extensions.
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APPENDIX A: FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

FROM A KERNEL OPERATOR VIEWPOINT

Throughout the paper, functional principal component decomposition provides a data-driven

way to reduce the infinite-dimensional object to finite dimensions. Here, we state without proof

the underlying concept of functional principal component analysis, and refer to Tran (2008) for

detailed proofs.

Let f be a random variable f : Ω → L2(I), such as f ∈ L2(Ω). f can also be seen as a

stochastic process defined on a compact set I, with finite variance
∫
I E( f 2) < ∞. Let µ be the mean

function of f , without loss of generality, let f c = f − µ be a centered stochastic process.

Definition 1 (Covariance operator) The covariance function of f is defined to be the function

K : I × I → R, such that

K(u, v) = Cov[ f (u), f (v)]

= E{[ f (u) − µ(u)][ f (v) − µ(v)]}.

By assuming f is a continuous and square-integrable covariate function, the function K induces

the kernel operator L2(I)→ L2(I), φ→ Kφ, given by

(Kφ)(u) =

∫
K(u, v)φ(v)dv.

Lemma 1 (Mercer’s Lemma)

Assume that K is continuous over I2, there exists an orthonormal sequence (φk) of continuous

function in L2(I) and a non-increasing sequence (λk) of positive numbers, such that

K(u, v) =

∞∑

k=1

λkφk(u)φk(v), u, v ∈ I.

Theorem 1 (Karhunen-Loève expansion)
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With Mercer’s lemma, a stochastic process f can be expressed as

f (u) = µ(u) +

∞∑

k=1

√
λkξkφk(u),

= µ(u) +

∞∑

k=1

βkφk(u),

where ξk = 1√
λk

∫
I f c(v)φk(v)dv is an uncorrelated random variable with zero mean and unit

variance. In practice, we keep the first K terms, which reduces the infinite-dimensional object to

finite dimensions.
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APPENDIX B: CODE USED FOR ESTIMATING VARIANCE

PARAMETERS IN THE PARAMETRIC BOOTSTRAPPING

Statistical software WinBUGS (Lunn et al. 2009) originally designed for performing Bayesian

analysis is used here to estimate variances in the principal component scores and error function, and

sample principal component scores and error function, for the independent functional data model.

Below is a modified version of WinBUGS code originally given in Crainiceanu & Goldsmith

(2010).

model {
f o r ( i i n 1 : N sub j )
{

f o r ( t i n 1 : N obs )
{

W[ i , t ] ˜ dnorm (m[ i , t ] , t a u e p s )
m[ i , t ] <− x i [ i , 1 ] ∗ E [ t , 1 ] + x i [ i , 2 ] ∗ E [ t , 2 ] +

x i [ i , 3 ] ∗ E [ t , 3 ] + x i [ i , 4 ] ∗ E [ t , 4 ] +

x i [ i , 5 ] ∗ E [ t , 5 ] + x i [ i , 6 ] ∗ E [ t , 6 ]
}
f o r ( k i n 1 : d i m s p a c e )
{

x i [ i , k ] ˜ dnorm ( 0 , l l [ k ] )
}

}
f o r ( k i n 1 : d i m s p a c e )
{

l l [ k ] ˜ dgamma ( 1 . 0 E−3 , 1 . 0 E−3)
lambda [ k ] <−1/ l l [ k ]

}
t a u e p s ˜ dgamma ( 1 . 0 E−3 , 1 . 0 E−3)
l a m b d a t a u e p s <− 1 / t a u e p s

}

1. N subj is the number of subjects (sample size)

2. N obs in the number of observations within subjects (dimension)

3. W[i, t] represents the data for age t and subject i

4. m[i, t] is the smoothed mean of W[i,t]
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5. taueps is the precision of the error function

6. lambda taueps is the variance of the error function

7. xi[i,k] is the score of the ith subject on the kth functional principal component

8. E[t,k] is the kth functional principal component evaluated at age t The matrix E is N obs x K
and is loaded as non-missing value data

9. dim space is the number of functional principal components

10. ll[k] are the precisions of the scores xi[i,k]

11. lambda[k] are the variances of the scores xi[i,k]

12. all precision priors are Gamma priors with mean 1 and variance 1000
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